Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 44

Answer

$$A = \ln 5$$

Work Step by Step

$$\eqalign{ & {\text{The area is given by}} \cr & A = \int_{ - \ln 5}^{\ln 5} {\frac{1}{{1 + {e^x}}}dx} \cr & {\text{Multiply the numerator and denominator by }}{e^{ - x}} \cr & A = \int_{ - \ln 5}^{\ln 5} {\frac{{{e^{ - x}}}}{{{e^{ - x}} + 1}}dx} \cr & A = - \int_{ - \ln 5}^{\ln 5} {\frac{{ - {e^{ - x}}}}{{{e^{ - x}} + 1}}dx} \cr & {\text{Integrating}} \cr & A = - \left[ {\ln \left( {{e^{ - x}} + 1} \right)} \right]_{ - \ln 5}^{\ln 5} \cr & A = - \left[ {\ln \left( {{e^{ - \ln 5}} + 1} \right)} \right] + \left[ {\ln \left( {{e^{\ln 5}} + 1} \right)} \right] \cr & A = - \left[ {\ln \left( {\frac{1}{5} + 1} \right)} \right] + \left[ {\ln \left( {5 + 1} \right)} \right] \cr & A = - \ln \frac{6}{5} + \ln 6 \cr & A = \ln \frac{6}{{6/5}} \cr & A = \ln 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.