Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 33

Answer

$$\frac{{{x^2}}}{2} - 2x + \frac{1}{2}\ln \left( {{x^2} + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3} - 2{x^2} + 2x - 2}}{{{x^2} + 1}}} dx \cr & {\text{This is an improper rational function}}{\text{; use the long division to obtain}} \cr & \frac{{{x^3} - 2{x^2} + 2x - 2}}{{{x^2} + 1}} = x - 2 + \frac{x}{{{x^2} + 1}} \cr & {\text{Then the integrand can be written as}} \cr & \int {\frac{{{x^3} - 2{x^2} + 2x - 2}}{{{x^2} + 1}}} dx = \int {\left( {x - 2 + \frac{x}{{{x^2} + 1}}} \right)} dx \cr & {\text{Integrating}} \cr & = \frac{{{x^2}}}{2} - 2x + \frac{1}{2}\ln \left( {{x^2} + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.