Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 30

Answer

$$\frac{1}{2}\ln \left| x \right| - \frac{1}{4}\ln \left( {{x^2} + 2} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{x^3} + 2x}}} \cr & {\text{factoring the denominator}} \cr & \int {\frac{{dx}}{{x\left( {{x^2} + 2} \right)}}} \cr & {\text{The partial fraction decomposition of the integrand is}} \cr & \frac{1}{{x\left( {{x^2} + 2} \right)}} = \frac{A}{x} + \frac{{Bx + C}}{{{x^2} + 2}} \cr & {\text{Multiplying by }}x\left( {{x^2} + 2} \right){\text{ yields}} \cr & 1 = A\left( {{x^2} + 2} \right) + x\left( {Bx + C} \right) \cr & 1 = A{x^2} + 2A + B{x^2} + Cx \cr & {\text{Collecting like powers of }}x{\text{, this becomes}} \cr & 1 = \left( {A{x^2} + B{x^2}} \right) + Cx + 2A \cr & {\text{Equating corresponding coefficients yields the following system }} \cr & {\text{of linear equations}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,A + B = 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C = 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2A = 1 \cr & {\text{Solving the system of linear equations by a calculator we obtain}} \cr & \,\,\,A = \frac{1}{2},\,\,\,B = - \frac{1}{2},\,\,\,C = 0 \cr & \cr & {\text{Then}}{\text{, the integrand can be written as}} \cr & \frac{1}{{x\left( {{x^2} + 2} \right)}} = \frac{{1/2}}{x} + \frac{{\left( { - 1/2} \right)x}}{{{x^2} + 2}} \cr & \int {\frac{{dx}}{{{x^3} + 2x}}} = \int {\left( {\frac{{1/2}}{x} + \frac{{\left( { - 1/2} \right)x}}{{{x^2} + 2}}} \right)} dx \cr & {\text{Integrating}} \cr & = \frac{1}{2}\ln \left| x \right| - \frac{1}{4}\ln \left( {{x^2} + 2} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.