Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 40

Answer

$$\frac{1}{4}\ln \left| {\frac{{{e^t} - 2}}{{{e^t} + 2}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^t}}}{{{e^{2t}} - 4}}dt} \cr & {\text{Let }}x = {e^t},{\text{ }}dx = {e^t}dt \cr & \int {\frac{{{e^t}}}{{{e^{2t}} - 4}}dt} = \int {\frac{{dx}}{{{x^2} - 4}}} \cr & {\text{Decomposing }}\frac{1}{{{x^2} - 4}}{\text{ into partial fractions}} \cr & \frac{1}{{{x^2} - 4}} = \frac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \cr & \frac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{A}{{x - 2}} + \frac{B}{{x + 2}} \cr & 1 = A\left( {x + 2} \right) + B\left( {x - 2} \right) \cr & {\text{let }}x = 2 \cr & 1 = A\left( 4 \right),{\text{ }}A = \frac{1}{4} \cr & {\text{let }}x = - 1 \cr & 1 = B\left( { - 4} \right),{\text{ }}B = - \frac{1}{4} \cr & \frac{1}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{1/4}}{{x - 2}} - \frac{{1/4}}{{x + 2}} \cr & ,{\text{ then}} \cr & \int {\frac{{dx}}{{{x^2} - 4}}} = \int {\left( {\frac{{1/4}}{{x - 2}} - \frac{{1/4}}{{x + 2}}} \right)} dx \cr & {\text{Integrating}} \cr & = \frac{1}{4}\ln \left| {x - 2} \right| - \frac{1}{4}\ln \left| {x + 2} \right| + C \cr & = \frac{1}{4}\ln \left| {\frac{{x - 2}}{{x + 2}}} \right| + C \cr & {\text{Write in terms of }}\theta ,{\text{ replace }}x = {e^t} \cr & = \frac{1}{4}\ln \left| {\frac{{{e^t} - 2}}{{{e^t} + 2}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.