Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 49

Answer

$$\frac{\pi }{8}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{x}{{{x^4} + 1}}dx} \cr & {\text{Rewrite}} \cr & \int_0^1 {\frac{x}{{{x^4} + 1}}dx} = \int_0^1 {\frac{x}{{{{\left( {{x^2}} \right)}^2} + 1}}dx} \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx \cr & {\text{The new limits are:}} \cr & x = 0 \Rightarrow u = 0 \cr & x = 1 \Rightarrow u = 1 \cr & {\text{,then}} \cr & \int_0^1 {\frac{x}{{{{\left( {{x^2}} \right)}^2} + 1}}dx} = \frac{1}{2}\int_0^1 {\frac{{du}}{{{u^2} + 1}}} \cr & {\text{Integrating}} \cr & = \frac{1}{2}\left[ {{{\tan }^{ - 1}}u} \right]_0^1 \cr & = \frac{1}{2}\left[ {{{\tan }^{ - 1}}1 - {{\tan }^{ - 1}}0} \right] \cr & = \frac{1}{2}\left( {\frac{\pi }{4}} \right) \cr & = \frac{\pi }{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.