Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 26

Answer

$$ - \ln \left| {x - 1} \right| + 3\ln \left| x \right| - \frac{1}{x} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{2{x^2} - 2x - 1}}{{{x^3} - {x^2}}}} dx \cr & {\text{Factoring the denominator}} \cr & \int {\frac{{2{x^2} - 2x - 1}}{{{x^2}\left( {x - 1} \right)}}} dx \cr & \cr & {\text{The partial fraction decomposition of the integrand is}} \cr & \frac{{2{x^2} - 2x - 1}}{{{x^2}\left( {x - 1} \right)}} = \frac{A}{{x - 1}} + \frac{B}{x} + \frac{C}{{{x^2}}} \cr & {\text{Multiplying by }}{x^2}\left( {x - 1} \right){\text{ yields}} \cr & 2{x^2} - 2x - 1 = A{x^2} + Bx\left( {x - 1} \right) + C\left( {x - 1} \right) \cr & 2{x^2} - 2x - 1 = A{x^2} + B{x^2} - Bx + Cx - C \cr & {\text{Collecting like powers of }}x{\text{, this becomes}} \cr & 2{x^2} - 2x - 1 = \left( {A{x^2} + B{x^2}} \right) + \left( { - Bx + Cx} \right) - C \cr & {\text{Equating corresponding coefficients yields the following system }} \cr & {\text{of linear equations}} \cr & \,\,\,\,\,A + B = 2 \cr & - B + C = - 2 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,C = 1 \cr & {\text{Solving the system of linear equations we obtain}} \cr & \,\,\,A = - 1,\,\,\,B = 3,\,\,\,C = 1 \cr & \cr & {\text{Then}}{\text{, the integrand can be written as}} \cr & \frac{{2{x^2} - 2x - 1}}{{{x^2}\left( {x - 1} \right)}} = - \frac{1}{{x - 1}} + \frac{3}{x} + \frac{1}{{{x^2}}} \cr & \int {\frac{{2{x^2} - 2x - 1}}{{{x^2}\left( {x - 1} \right)}}} dx = \int {\left( { - \frac{1}{{x - 1}} + \frac{3}{x} + \frac{1}{{{x^2}}}} \right)} dx \cr & {\text{Integrating}} \cr & = - \ln \left| {x - 1} \right| + 3\ln \left| x \right| - \frac{1}{x} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.