Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 32

Answer

$$\arctan x + \frac{1}{2}\ln \left( {{x^2} + 2} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3} + {x^2} + x + 2}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right)}}} dx \cr & {\text{The partial fraction decomposition of the integrand is}} \cr & \frac{{{x^3} + {x^2} + x + 2}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 3} \right)}} = \frac{{Ax + B}}{{{x^2} + 1}} + \frac{{Cx + D}}{{{x^2} + 2}} \cr & {\text{Multiplying by }}\left( {{x^2} + 1} \right)\left( {{x^2} + 2} \right){\text{ yields}} \cr & {x^3} + {x^2} + x + 2 = \left( {Ax + B} \right)\left( {{x^2} + 2} \right) + \left( {Cx + D} \right)\left( {{x^2} + 1} \right) \cr & {x^3} + {x^2} + x + 2 = A{x^3} + 2Ax + B{x^2} + 2B + C{x^3} + Cx + D{x^2} + D \cr & {\text{Collecting like powers of }}x{\text{, this becomes}} \cr & {x^3} + {x^2} + x + 2 = \left( {A{x^3} + C{x^3}} \right) + \left( {B{x^2} + D{x^2}} \right) + \left( {2Ax + Cx} \right) + 2B + D \cr & {\text{Equating corresponding coefficients yields the following system }} \cr & {\text{of linear equations}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,A + C = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,B + D = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2A + C = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2B + D = 2 \cr & {\text{Solving the system of linear equations by a calculator we obtain}} \cr & \,\,\,A = 0,\,\,\,B = 1,\,\,\,C = 1,\,\,\,D = 0 \cr & \cr & {\text{Then}}{\text{, the integrand can be written as}} \cr & \frac{{{x^3} + {x^2} + x + 2}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 3} \right)}} = \frac{1}{{{x^2} + 1}} + \frac{x}{{{x^2} + 2}} \cr & \int {\frac{{{x^3} + {x^2} + x + 2}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 3} \right)}}} = \int {\left( {\frac{1}{{{x^2} + 1}} + \frac{x}{{{x^2} + 2}}} \right)} dx \cr & {\text{Integrating}} \cr & = \arctan x + \frac{1}{2}\ln \left( {{x^2} + 2} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.