Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 522: 27

Answer

$$\ln \left| {x + 1} \right| + \frac{2}{{x + 1}} - \frac{1}{{2{{\left( {x + 1} \right)}^2}}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^2}}}{{{{\left( {x + 1} \right)}^3}}}} dx \cr & {\text{The partial fraction decomposition of the integrand is}} \cr & \frac{{{x^2}}}{{{{\left( {x + 1} \right)}^3}}} = \frac{A}{{x + 1}} + \frac{B}{{{{\left( {x + 1} \right)}^2}}} + \frac{C}{{{{\left( {x + 1} \right)}^3}}} \cr & {\text{Multiplying by }}{\left( {x + 1} \right)^3}{\text{ yields}} \cr & {x^2} = A{\left( {x + 1} \right)^2} + B\left( {x + 1} \right) + C \cr & {x^2} = A\left( {{x^2} + 2x + 1} \right)Bx + B + C \cr & {x^2} = A{x^2} + 2Ax + A + Bx + B + C \cr & {\text{Collecting like powers of }}x{\text{, this becomes}} \cr & {x^2} = A{x^2} + \left( {2Ax + Bx} \right) + A + B + C \cr & {\text{Equating corresponding coefficients yields the following system }} \cr & {\text{of linear equations}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,A = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,2A + B = 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,A + B + C = 0 \cr & {\text{Solving the system of linear equations we obtain}} \cr & \,\,\,A = 1,\,\,\,B = - 2,\,\,\,C = 1 \cr & \cr & {\text{Then}}{\text{, the integrand can be written as}} \cr & \frac{{{x^2}}}{{{{\left( {x + 1} \right)}^3}}} = \frac{1}{{x + 1}} - \frac{2}{{{{\left( {x + 1} \right)}^2}}} + \frac{1}{{{{\left( {x + 1} \right)}^3}}} \cr & \int {\frac{{{x^2}}}{{{{\left( {x + 1} \right)}^3}}}} dx = \int {\left( {\frac{1}{{x + 1}} - \frac{2}{{{{\left( {x + 1} \right)}^2}}} + \frac{1}{{{{\left( {x + 1} \right)}^3}}}} \right)} dx \cr & = \int {\left( {\frac{1}{{x + 1}} - 2{{\left( {x + 1} \right)}^{ - 2}} + {{\left( {x + 1} \right)}^{ - 3}}} \right)} dx \cr & {\text{Integrating}} \cr & = \ln \left| {x + 1} \right| - 2\left( {\frac{{{{\left( {x + 1} \right)}^{ - 1}}}}{{ - 1}}} \right) + \frac{{{{\left( {x + 1} \right)}^{ - 2}}}}{{ - 2}} + C \cr & = \ln \left| {x + 1} \right| + \frac{2}{{x + 1}} - \frac{1}{{2{{\left( {x + 1} \right)}^2}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.