Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 3

Answer

$$\frac{1}{2}\theta - \frac{1}{{20}}\sin 10\theta + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^2}5\theta } d\theta \cr & {\text{identity si}}{{\text{n}}^2}x = \frac{{1 - \cos 2x}}{2},{\text{ }}x = 5\theta \cr & = \int {\frac{{1 - \cos 2\left( {5\theta } \right)}}{2}} d\theta \cr & = \int {\frac{{1 - \cos 10\theta }}{2}} d\theta \cr & = \int {\left( {\frac{1}{2} - \frac{{\cos 10\theta }}{2}} \right)} d\theta \cr & {\text{sum rule}} \cr & = \int {\frac{1}{2}} d\theta - \frac{1}{2}\int {\cos 10\theta } d\theta \cr & {\text{find antiderivatives}} \cr & = \frac{1}{2}\theta - \frac{1}{2}\left( {\frac{1}{{10}}\sin 10\theta } \right) + C \cr & = \frac{1}{2}\theta - \frac{1}{{20}}\sin 10\theta + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.