Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 9

Answer

$$\frac{{{{\sin }^3}t}}{3} - \frac{{{{\sin }^5}t}}{5} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^2}t{{\cos }^3}t} dt \cr & {\text{split off }}{\cos ^3}t \cr & = \int {{{\sin }^2}t{{\cos }^2}t\cos t} dt \cr & {\text{identity }}{\sin ^2}t + {\cos ^2}t = 1 \cr & = \int {{{\sin }^2}t\left( {1 - {{\sin }^2}t} \right)\cos t} dt \cr & = \int {\left( {{{\sin }^2}t - {{\sin }^4}t} \right)\cos t} dt \cr & {\text{substitute }}u = \sin t,{\text{ }}du = \cos tdt \cr & = \int {\left( {{u^2} - {u^4}} \right)du} \cr & {\text{find the antiderivatives by the power rule}} \cr & = \frac{{{u^3}}}{3} - \frac{{{u^5}}}{5} + C \cr & {\text{write in terms of }}t,{\text{ replace }}u = \sin t \cr & = \frac{{{{\sin }^3}t}}{3} - \frac{{{{\sin }^5}t}}{5} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.