Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 6

Answer

$$\frac{1}{a}\sin at - \frac{1}{{3a}}{\sin ^3}at + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^3}atdt} \cr & {\text{split off }}{\cos ^3}at \cr & = \int {{{\cos }^2}at\cos atdt} \cr & {\text{identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int {\left( {1 - {{\sin }^2}at} \right)\cos at} dt \cr & = \int {\left( {\cos at - {{\sin }^2}at\cos at} \right)} dt \cr & {\text{sum rule}} \cr & = \int {\cos at} dt - \int {{{\sin }^2}at\cos at} dt \cr & u = \sin at,{\text{ }}du = a\cos atdt \cr & = \int {\cos at} dt - \frac{1}{a}\int {{u^2}} dt \cr & {\text{find antiderivatives}} \cr & = \frac{1}{a}\sin at - \frac{1}{{3a}}{u^3} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin at \cr & = \frac{1}{a}\sin at - \frac{1}{{3a}}{\sin ^3}at + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.