Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 7

Answer

$$\frac{{{{\sin }^2}ax}}{{2a}} + C$$

Work Step by Step

$$\eqalign{ & \int {\sin ax\cos ax} dx \cr & {\text{substitute }}u = \sin ax,{\text{ }}du = a\cos axdx \cr & = \int {\sin ax\cos ax} dx \cr & = \frac{1}{a}\int u du \cr & {\text{find the antiderivative by the power rule}} \cr & = \frac{1}{a}\left( {\frac{{{u^2}}}{2}} \right) + C \cr & = \frac{{{u^2}}}{{2a}} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin ax \cr & = \frac{{{{\sin }^2}ax}}{{2a}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.