Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 8

Answer

$$\frac{{{{\cos }^6}x}}{6} - \frac{{{{\cos }^4}x}}{4} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^3}x{{\cos }^3}x} dx \cr & {\text{split off }}{\sin ^3}x \cr & = \int {{{\sin }^2}x{{\cos }^3}x} \sin xdx \cr & {\text{identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int {\left( {1 - {{\cos }^2}x} \right){{\cos }^3}x} \sin xdx \cr & = \int {\left( {{{\cos }^3}x - {{\cos }^5}x} \right)} \sin xdx \cr & {\text{substitute }}u = \cos x,{\text{ }}du = - \sin xdx \cr & = \int {\left( {{u^3} - {u^5}} \right)} \left( { - du} \right) \cr & = \int {\left( {{u^5} - {u^3}} \right)du} \cr & {\text{find the antiderivatives by the power rule}} \cr & = \frac{{{u^6}}}{6} - \frac{{{u^4}}}{4} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos x \cr & = \frac{{{{\cos }^6}x}}{6} - \frac{{{{\cos }^4}x}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.