Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 2

Answer

$$\frac{{{{\sin }^6}3x}}{{18}} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^5}3x\cos 3x} dx \cr & {\text{substitute }}u = \sin 3x,{\text{ }} \cr & du = 3\cos 3xdx \cr & \frac{1}{3}du = \cos 3xdx \cr & \int {{{\sin }^5}3x\cos 3x} dx = \int {{u^5}\left( {\frac{1}{3}du} \right)} \cr & = \frac{1}{3}\int {{u^5}du} \cr & {\text{find the antiderivative by the power rule}} \cr & = \frac{{{u^6}}}{{18}} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin 3x,{\text{ }} \cr & = \frac{{{{\sin }^6}3x}}{{18}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.