Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 4

Answer

$$\frac{1}{2}x + \frac{1}{{12}}\sin 6x + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^2}3x} dx \cr & {\text{identity }}{\cos ^2}\theta = \frac{{1 + \cos 2\theta }}{2},{\text{ }}\theta = 3x \cr & = \int {\frac{{1 + \cos 2\left( {3x} \right)}}{2}} dx \cr & = \int {\frac{{1 + \cos 6x}}{2}} dx \cr & = \int {\left( {\frac{1}{2} + \frac{{\cos 6x}}{2}} \right)} d\theta \cr & {\text{sum rule}} \cr & = \int {\frac{1}{2}} dx + \frac{1}{2}\int {\cos 6x} dx \cr & {\text{find antiderivatives}} \cr & = \frac{1}{2}x + \frac{1}{2}\left( {\frac{1}{6}\sin 6x} \right) + C \cr & = \frac{1}{2}x + \frac{1}{{12}}\sin 6x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.