Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 1

Answer

$$ - \frac{{{{\cos }^4}x}}{4} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^3}x} \sin xdx \cr & {\text{substitute }}u = \cos x,{\text{ }}du = - \sin xdx \cr & \int {{{\cos }^3}x} \sin xdx = \int {{u^3}\left( { - du} \right)} \cr & = - \int {{u^3}du} \cr & {\text{find the antiderivative by the power rule}} \cr & = - \frac{{{u^4}}}{4} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos x \cr & = - \frac{{{{\left( {\cos x} \right)}^4}}}{4} + C \cr & = - \frac{{{{\cos }^4}x}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.