Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 5

Answer

$$ - \frac{1}{a}\cos a\theta + \frac{1}{{3a}}{\cos ^3}a\theta + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^3}a\theta d\theta } \cr & {\text{split off }}{\sin ^3}a\theta d\theta \cr & = \int {{{\sin }^2}a\theta \sin a\theta d\theta } \cr & {\text{identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int {\left( {1 - {{\cos }^2}a\theta } \right)\sin a\theta } d\theta \cr & = \int {\left( {\sin a\theta - {{\cos }^2}a\theta \sin a\theta } \right)} d\theta \cr & {\text{sum rule}} \cr & = \int {\sin a\theta } d\theta - \int {{{\cos }^2}a\theta } \sin a\theta d\theta \cr & u = \cos a\theta ,{\text{ }}du = - a\sin a\theta d\theta \cr & = \int {\sin a\theta } d\theta + \frac{1}{a}\int {{u^2}} du \cr & {\text{find antiderivatives}} \cr & = - \frac{1}{a}\cos a\theta + \frac{1}{{3a}}{u^3} + C \cr & {\text{write in terms of }}\theta ,{\text{ replace }}u = \cos a\theta \cr & = - \frac{1}{a}\cos a\theta + \frac{1}{{3a}}{\cos ^3}a\theta + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.