Answer
$$\eqalign{
& \left. {\text{a}} \right)y = - \frac{1}{{16{x^2}}} + \frac{1}{{16}} \cr
& \left. {\text{b}} \right)y = \tan t + \cos t - \frac{{\sqrt 2 }}{2} \cr
& \left. {\text{c}} \right)y = \frac{2}{9}{x^{9/2}} \cr} $$
Work Step by Step
$$\eqalign{
& \left. {\text{a}} \right){\text{ }}\frac{{dy}}{{dx}} = \frac{1}{{{{\left( {2x} \right)}^3}}},{\text{ }}y\left( 1 \right) = 0 \cr
& \frac{{dy}}{{dx}} = \frac{1}{{8{x^3}}} \cr
& \frac{{dy}}{{dx}} = \frac{1}{8}{x^{ - 3}} \cr
& dy = \frac{1}{8}{x^{ - 3}}dx \cr
& y = \frac{1}{8}\int {{x^{ - 3}}} dx \cr
& y = \frac{1}{8}\left( {\frac{{{x^{ - 2}}}}{{ - 2}}} \right) + C \cr
& y = - \frac{1}{{16{x^2}}} + C \cr
& {\text{Using the initial condition}} \cr
& 0 = - \frac{1}{{16{{\left( 1 \right)}^2}}} + C \cr
& C = \frac{1}{{16}} \cr
& {\text{then}} \cr
& y = - \frac{1}{{16{x^2}}} + \frac{1}{{16}} \cr
& \cr
& \left. {\text{b}} \right){\text{ }}\frac{{dy}}{{dt}} = {\sec ^2}t - \sin t,{\text{ }}y\left( {\frac{\pi }{4}} \right) = 1 \cr
& dy = \left( {{{\sec }^2}t - \sin t} \right)dt \cr
& y = \int {\left( {{{\sec }^2}t - \sin t} \right)} dt \cr
& y = \tan t + \cos t + C \cr
& {\text{Using the initial condition}} \cr
& 1 = \tan \left( {\frac{\pi }{4}} \right) + \cos \left( {\frac{\pi }{4}} \right) + C \cr
& 1 = 1 + \frac{{\sqrt 2 }}{2} + C \cr
& C = - \frac{{\sqrt 2 }}{2} \cr
& {\text{then}} \cr
& y = \tan t + \cos t - \frac{{\sqrt 2 }}{2} \cr
& \cr
& \left. {\text{c}} \right){\text{ }}\frac{{dy}}{{dx}} = {x^2}\sqrt {{x^3}} ,{\text{ }}y\left( 0 \right) = 0 \cr
& \frac{{dy}}{{dx}} = {x^{7/2}} \cr
& dy = {x^{7/2}}dx \cr
& y = \int {{x^{7/2}}} dx \cr
& y = \frac{2}{9}{x^{9/2}} + C \cr
& {\text{Using the initial condition}} \cr
& 0 = \frac{2}{9}{\left( 0 \right)^{9/2}} + C \cr
& C = 0 \cr
& {\text{then}} \cr
& y = \frac{2}{9}{x^{9/2}} \cr} $$