Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 20

Answer

$$ - \frac{1}{{2{t^2}}} - 2t + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{1 - 2{t^3}}}{{{t^3}}}} dt \cr & {\text{distribute numerator}} \cr & = \int {\left( {\frac{1}{{{t^3}}} - \frac{{2{t^3}}}{{{t^3}}}} \right)} dx \cr & = \int {\left( {\frac{1}{{{t^3}}} - 2} \right)} dx \cr & = \int {\left( {{t^{ - 3}} - 2} \right)} dx \cr & {\text{power rule}} \cr & = \frac{{{t^{ - 3 + 1}}}}{{ - 3 + 1}} - 2t + C \cr & = \frac{{{t^{ - 2}}}}{{ - 2}} - 2t + C \cr & = - \frac{1}{{2{t^2}}} - 2t + C \cr & {\text{check by differentiation}} \cr & = \frac{d}{{dx}}\left[ {\frac{{{t^{ - 2}}}}{{ - 2}} - 2t + C} \right] \cr & = \frac{{ - 2{t^{ - 3}}}}{{ - 2}} - 2 + 0 \cr & = \frac{1}{{{t^3}}} - 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.