Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 28

Answer

$$\frac{{{\phi ^2}}}{2} - 2\cot \phi + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {\phi + \frac{2}{{{{\sin }^2}\phi }}} \right)d\phi } \cr & = \int {\left( {\phi + 2\left( {\frac{1}{{{{\sin }^2}\phi }}} \right)} \right)d\phi } \cr & {\text{basic trigonometric identities }}\csc \theta = \frac{1}{{\sin \theta }} \cr & = \int {\left( {\phi + 2{{\csc }^2}\phi } \right)d\phi } \cr & {\text{sum rule}} \cr & = \int {\phi d\phi } + \int {2{{\csc }^2}\phi d\phi } \cr & = \int {\phi d\phi } + 2\int {{{\csc }^2}\phi d\phi } \cr & {\text{use power rule and integration formulas from table 4}}{\text{.2}}{\text{.1}} \cr & = \frac{{{\phi ^2}}}{2} + 2\left( { - \cot \phi } \right) + C \cr & = \frac{{{\phi ^2}}}{2} - 2\cot \phi + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.