Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 23

Answer

$$\tan x + \sec x + C$$

Work Step by Step

$$\eqalign{ & \int {\sec x\left( {\sec x + \tan x} \right)} dx \cr & {\text{multiply}} \cr & = \int {\sec x\left( {\sec x + \tan x} \right)} dx \cr & = \int {\left( {{{\sec }^2}x + \sec x\tan x} \right)} dx \cr & {\text{sum rule}} \cr & = \int {{{\sec }^2}x} dx + \int {\sec x\tan x} dx \cr & {\text{use integration formulas from table 4}}{\text{.2}}{\text{.1}} \cr & = - \cot t - \sec t + C \cr & = \tan x + \sec x + C \cr & \cr & {\text{check by differentiation}} \cr & = \frac{d}{{dt}}\left[ {\tan x + \sec x + C} \right] \cr & = {\sec ^2}x + \sec x\tan x + 0 \cr & = \sec x\left( {\sec x + \tan x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.