Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 30

Answer

$$\frac{1}{2}\tan x + \frac{1}{2}x + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sec x + \cos x}}{{2\cos x}}} dx \cr & {\text{distribute }} \cr & = \int {\left( {\frac{{\sec x}}{{2\cos x}} + \frac{{\cos x}}{{2\cos x}}} \right)} dx \cr & = \int {\left( {\frac{1}{{2\cos x}}\sec x + \frac{1}{2}} \right)} dx \cr & {\text{basic trigonometric identity sec}}\theta = \frac{1}{{\cos \theta }} \cr & = \int {\left( {\frac{1}{2}\sec x\sec x + \frac{1}{2}} \right)} dx \cr & = \int {\left( {\frac{1}{2}{{\sec }^2}x + \frac{1}{2}} \right)} dx \cr & = \int {\frac{1}{2}{{\sec }^2}x} dx + \int {\frac{1}{2}} dx \cr & {\text{find the antiderivative}} \cr & = \frac{1}{2}\tan x + \frac{1}{2}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.