Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 24

Answer

$$x - \csc x + C$$

Work Step by Step

$$\eqalign{ & \int {\csc x\left( {\sin x + \cot x} \right)dx} \cr & {\text{multiply}} \cr & = \int {\left( {\csc x\sin x + \csc x\cot x} \right)dx} \cr & {\text{basic trigonometric identities}} \cr & = \int {\left( {\frac{1}{{\sin x}}\sin x + \csc x\cot x} \right)dx} \cr & = \int {\left( {1 + \csc x\cot x} \right)dx} \cr & = \int {dx} + \int {\csc x\cot x} dx \cr & {\text{find the antiderivative}} \cr & = x - \csc x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.