Answer
$$\tan \theta + C$$
Work Step by Step
$$\eqalign{
& \int {\frac{{\sec \theta }}{{\cos \theta }}} d\theta \cr
& = \int {\frac{1}{{\cos \theta }}\sec \theta } d\theta \cr
& {\text{basic trigonometric identity sec}}\theta = \frac{1}{{\cos \theta }} \cr
& = \int {\frac{1}{{\cos \theta }}\frac{1}{{\cos \theta }}} d\theta \cr
& = \int {\frac{1}{{{{\cos }^2}\theta }}} d\theta \cr
& = \int {{{\sec }^2}\theta } d\theta \cr
& {\text{find the antiderivative}} \cr
& = \tan \theta + C \cr} $$