Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 29

Answer

$$\theta - \cos \theta + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {1 + {{\sin }^2}\theta \csc \theta } \right)d\theta } \cr & {\text{basic trigonometric identities }}\csc \theta = \frac{1}{{\sin \theta }} \cr & = \int {\left( {1 + {{\sin }^2}\theta \left( {\frac{1}{{\sin \theta }}} \right)} \right)d\theta } \cr & = \int {\left( {1 + \sin \theta } \right)d\theta } \cr & = \int {d\theta } + \int {\sin } d\theta \cr & {\text{use power rule and integration formulas from table 4}}{\text{.2}}{\text{.1}} \cr & = \theta + \left( { - \cos \theta } \right) + C \cr & = \theta - \cos \theta + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.