Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 279: 21

Answer

$$ - 3\cos x - 2\tan x + C $$

Work Step by Step

$$\eqalign{ & \int {\left( {3\sin x - 2{{\sec }^2}x} \right)dx} \cr & {\text{sum rule}} \cr & = 3\int {\sin x} dx - 2\int {{{\sec }^2}x} dx \cr & {\text{use integration formulas from table 4}}{\text{.2}}{\text{.1}} \cr & = 3\left( { - \cos x} \right) - 2\left( {\tan x} \right) + C \cr & = - 3\cos x - 2\tan x + C \cr & \cr & {\text{check by differentiation}} \cr & = \frac{d}{{dx}}\left[ { - 3\cos x - 2\tan x + C} \right] \cr & = - 3\left( { - \sin x} \right) - 2\left( {{{\sec }^2}x} \right) + 0 \cr & = 3\sin x - 2{\sec ^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.