Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 46

Answer

(a) When we use the zoom function on a graphing calculator, we could estimate that $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1}) = 1.4$ (b) We could guess that $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1}) = 1.4434$ (c) $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1}) = \frac{5\sqrt{3}}{6}$

Work Step by Step

(a) When we use the zoom function on a graphing calculator, we could estimate that $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1}) = 1.4$ (b) We can evaluate $f(x)$ for increasing values of $x$: $f(10) = \sqrt{3(10)^2+8(10)+6}-\sqrt{3(10)^2+3(10)+1} = 1.4535$ $f(100) = \sqrt{3(100)^2+8(100)+6}-\sqrt{3(100)^2+3(100)+1} = 1.4446$ $f(1000) = \sqrt{3(1000)^2+8(1000)+6}-\sqrt{3(1000)^2+3(1000)+1} = 1.4435$ $f(10,000) = \sqrt{3(10,000)^2+8(10,000)+6}-\sqrt{3(10,000)^2+3(10,000)+1} = 1.4434$ $f(100,000) =\sqrt{3(100,000)^2+8(100,000)+6}-\sqrt{3(100,000)^2+3(100,000)+1} = 1.4434$ $f(1,000,000) = \sqrt{3(1,000,000)^2+8(1,000,000)+6}-\sqrt{3(1,000,000)^2+3(1,000,000)+1} = 1.4434$ We could guess that $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1}) = 1.4434$ (c) We can calculate the value of the limit: $\lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1})$ $= \lim\limits_{x \to \infty}(\sqrt{3x^2+8x+6}-\sqrt{3x^2+3x+1})\cdot \frac{(\sqrt{3x^2+8x+6}+\sqrt{3x^2+3x+1}}{(\sqrt{3x^2+8x+6}+\sqrt{3x^2+3x+1}}$ $= \lim\limits_{x \to \infty}\frac{(3x^2+8x+6)-(3x^2+3x+1)}{\sqrt{3x^2+8x+6}+\sqrt{3x^2+3x+1}}$ $= \lim\limits_{x \to \infty}\frac{5x+5}{\sqrt{3x^2+8x+6}+\sqrt{3x^2+3x+1}}$ $= \lim\limits_{x \to \infty}\frac{(5x+5)(\frac{1}{x})}{(\sqrt{3x^2+8x+6}+\sqrt{3x^2+3x+1})(\frac{1}{x})}$ $= \lim\limits_{x \to \infty}\frac{5+\frac{5}{x}}{(\sqrt{3x^2/x^2+8x/x^2+6/x^2}+\sqrt{3x^2/x^2+3x/x^2+1/x^2}}$ $= \lim\limits_{x \to \infty}\frac{5+\frac{5}{x}}{(\sqrt{3+8/x+6/x^2}+\sqrt{3+3/x+1/x^2}}$ $= \frac{5+0}{(\sqrt{3+0+0}+\sqrt{3+0+0}}$ $= \frac{5}{\sqrt{3}+\sqrt{3}}$ $= \frac{5}{2\sqrt{3}}$ $= \frac{5\sqrt{3}}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.