Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 29

Answer

$\lim\limits_{t \to \infty}(\sqrt{25t^2+2}-5t)=0$

Work Step by Step

$\lim\limits_{t \to \infty}(\sqrt{25t^2+2}-5t)=\lim\limits_{t \to \infty}(\sqrt{25t^2+2}-5t)\times \frac{\sqrt{25t^2+2}+5t}{\sqrt{25t^2+2}+5t}$ $=\lim\limits_{t \to \infty}\frac{25t^2+2-25t^2}{\sqrt{25t^2+2}+5t}$ $=\lim\limits_{t \to \infty}\frac{2}{\sqrt{25t^2+2}+5t}$ $=\lim\limits_{t \to \infty}\frac{2}{\sqrt{25t^2+2}+5t}\times \frac{1/t}{1/t}$ $=\lim\limits_{t \to \infty}\frac{2/t}{\sqrt{25+2/t^2}+5}$ (Use the properties of limits) $=\frac{\lim\limits_{t \to \infty}2/t}{\sqrt{\lim\limits_{t \to \infty}(25+2/t^2)}+\lim\limits_{t \to \infty}5}$ (Use the limit $\lim\limits_{t \to \infty}k/t^n=0$ for $n=1,2,...$) $=\frac{0}{\sqrt{25+0}+5}$ $=0$ Thus, $\lim\limits_{t \to \infty}(\sqrt{25t^2+2}-5t)=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.