Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 27

Answer

$\lim\limits_{x \to -\infty}\frac{2x^5-x}{x^4+3}=-\infty$

Work Step by Step

$\lim\limits_{x \to -\infty}\frac{2x^5-x}{x^4+3}=\lim\limits_{x \to -\infty}\frac{2x^5-x}{x^4+3}\times \frac{1/x^4}{1/x^4}$ $=\lim\limits_{x \to -\infty}\frac{2x-1/x^3}{1+3/x^4}$ (Use the properties of limits) $=\frac{2\lim\limits_{x \to -\infty}x-\lim\limits_{x \to -\infty}1/x^3}{\lim\limits_{x \to -\infty}(1+3/x^4)}$ (Use the limits $\lim\limits_{x \to -\infty}x=-\infty$ and $\lim\limits_{x \to -\infty}k/x^n=0,\ n\in\mathbb{N}$) $=\frac{2\cdot (-\infty)-0}{1+0}$ $=\frac{-\infty}{1}$ $=-\infty$ Thus, $\lim\limits_{x \to -\infty}\frac{2x^5-x}{x^4+3}=-\infty$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.