Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 23

Answer

$\frac{\sqrt{3}}{4}$

Work Step by Step

$\lim\limits_{x \to \infty}\frac{\sqrt{x+3x^2}}{4x-1}=\lim\limits_{x \to \infty}\frac{\sqrt{x+3x^2}}{4x-1}\times \frac{1/x}{1/x}$ $=\lim\limits_{x \to \infty}\frac{\sqrt{1/x+3}}{4-1/x}$ (Use the properties of limits) $=\frac{\sqrt{\lim\limits_{x \to \infty}1/x+3}}{\lim\limits_{x \to \infty}(4-1/x)}$ (Use the limit $\lim\limits_{x \to \infty} 1/x =0$) $=\frac{\sqrt{0+3}}{4-0}$ $=\frac{\sqrt{3}}{4}$ Thus, $\lim\limits_{x \to \infty}\frac{\sqrt{x+3x^2}}{4x-1}=\frac{\sqrt{3}}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.