Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 15

Answer

$\frac{4}{5}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{4x + 3}}{{5x - 1}} \cr & {\text{Use properties of limits}} \cr & = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( {4x} \right) + \mathop {\lim }\limits_{x \to \infty } \left( 3 \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {5x} \right) - \mathop {\lim }\limits_{x \to \infty } \left( 1 \right)}} = \frac{\infty }{\infty }{\text{ Ind}} \cr & {\text{Divide the numerator and denominator by }}x \cr & \mathop {\lim }\limits_{x \to \infty } \frac{{4x + 3}}{{5x - 1}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{4x}}{x} + \frac{3}{x}}}{{\frac{{5x}}{x} - \frac{1}{x}}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{4 + \frac{3}{x}}}{{5 - \frac{1}{x}}} \cr & {\text{Use properties of limits}} \cr & = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( 4 \right) + \mathop {\lim }\limits_{x \to \infty } \left( {\frac{3}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( 5 \right) - \mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right)}} \cr & {\text{Evaluate the limits}} \cr & {\text{ = }}\frac{{4 - 0}}{{5 - 0}} \cr & = \frac{4}{5} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to \infty } \frac{{4x + 3}}{{5x - 1}} = \frac{4}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.