Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 19

Answer

$ - \frac{1}{3}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{r \to \infty } \frac{{r - {r^3}}}{{2 - {r^2} + 3{r^3}}} \cr & {\text{Using properties of limits}} \cr & \mathop {\lim }\limits_{r \to \infty } \frac{{r - {r^3}}}{{2 - {r^2} + 3{r^3}}} = \frac{{\mathop {\lim }\limits_{r \to \infty } \left( {r - {r^3}} \right)}}{{\mathop {\lim }\limits_{r \to \infty } \left( {2 - {r^2} + 3{r^3}} \right)}} \cr & {\text{ }} = \frac{{\mathop {\lim }\limits_{r \to \infty } \left( r \right) - \mathop {\lim }\limits_{r \to \infty } \left( {{r^3}} \right)}}{{\mathop {\lim }\limits_{r \to \infty } \left( 2 \right) - \mathop {\lim }\limits_{r \to \infty } \left( {{r^2}} \right) + \mathop {\lim }\limits_{r \to \infty } \left( {3{r^3}} \right)}} \cr & {\text{Evaluate the limits}} \cr & {\text{ }} = \frac{\infty }{\infty } \cr & {\text{Divide the numerator and denominator by }}{r^3} \cr & \mathop {\lim }\limits_{r \to \infty } \frac{{r - {r^3}}}{{2 - {r^2} + 3{r^3}}} = \mathop {\lim }\limits_{r \to \infty } \frac{{\frac{r}{{{r^3}}} - \frac{{{r^3}}}{{{r^3}}}}}{{\frac{2}{{{r^3}}} - \frac{{{r^2}}}{{{r^3}}} + \frac{{3{r^3}}}{{{r^3}}}}} \cr & = \mathop {\lim }\limits_{r \to \infty } \frac{{\frac{1}{{{r^2}}} - 1}}{{\frac{2}{{{r^3}}} - \frac{1}{r} + 3}} \cr & {\text{Use properties of limits}} \cr & = \frac{{\mathop {\lim }\limits_{r \to \infty } \left( {\frac{1}{{{r^2}}}} \right) - \mathop {\lim }\limits_{r \to \infty } \left( 1 \right)}}{{\mathop {\lim }\limits_{r \to \infty } \left( {\frac{2}{{{r^3}}}} \right) - \mathop {\lim }\limits_{r \to \infty } \left( {\frac{1}{r}} \right) + \mathop {\lim }\limits_{r \to \infty } \left( 3 \right)}} \cr & {\text{Evaluate the limits}} \cr & = \frac{{0 - 1}}{{0 - 0 + 3}} \cr & = - \frac{1}{3} \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{r \to \infty } \frac{{r - {r^3}}}{{2 - {r^2} + 3{r^3}}} = - \frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.