Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 16

Answer

$0$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{ - 2}}{{3x + 7}} \cr & {\text{Using properties of limits}} \cr & \mathop {\lim }\limits_{x \to \infty } \frac{{ - 2}}{{3x + 7}} = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( { - 2} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {3x + 7} \right)}} \cr & {\text{ }} = \frac{{\mathop {\lim }\limits_{x \to \infty } \left( { - 2} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {3x} \right) + \mathop {\lim }\limits_{x \to \infty } \left( 7 \right)}} \cr & {\text{Evaluate the limits}} \cr & {\text{ }} = \frac{{ - 2}}{{\infty + 7}} \cr & {\text{ }} = 0 \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to \infty } \frac{{ - 2}}{{3x + 7}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.