Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 24

Answer

$\frac{1}{\sqrt{2}}$

Work Step by Step

$\lim_{t\to\infty}\frac{t+3}{\sqrt{2t^2-1}}=\lim_{t\to\infty}\frac{t+3}{\sqrt{2t^2-1}}\times \frac{1/t}{1/t}$ $=\lim_{t\to\infty}\frac{1+3/t}{\sqrt{2-1/t^2}}$ (Use the properties of limits) $=\frac{\lim_{t\to\infty}(1+3/t)}{\sqrt{\lim_{t\to\infty}(2-1/t^2)}}$ (Use the limit $=\lim_{t\to\infty} k/t=0$ and $\lim_{t\to\infty}k/t^2=0$) $=\frac{1+0}{\sqrt{2-0}}$ $=\frac{1}{\sqrt{2}}$ Thus, $\lim_{t\to\infty}\frac{t+3}{\sqrt{2t^2-1}}=\frac{1}{\sqrt{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.