Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 138: 39

Answer

$\lim\limits_{x \to (\pi/2)^+}e^{\sec x}=0$

Work Step by Step

$\lim\limits_{x \to (\pi/2)^+}e^{\sec x}$ (By letting $y=\sec x$, as $x\to (\pi/2)^+$, $y\to -\infty$) $=\lim\limits_{y \to -\infty}e^y$ (By letting $t=-y$, as $y\to -\infty $, $t\to \infty$) $=\lim\limits_{t \to \infty}e^{-t}$ $=\lim\limits_{t \to \infty}\frac{1}{e^t}$ (By letting $w=e^t$, as $t\to \infty $, $w\to \infty$) $=\lim\limits_{w \to \infty}\frac{1}{w}$ $=0$ Thus, $\lim\limits_{x \to (\pi/2)^+}e^{\sec x}=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.