Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 49

Answer

a. Graph for sgn(x) is shown b. (i) 1 (ii) -1 (iii) DNE (iv) 1

Work Step by Step

1. $x\rightarrow 0^{+}$ from right of 0, sgn x=1 $\lim _{x\to 0^+}\left(sgn\:x\right)=1$ 2. $x\rightarrow 0^{-}$ from left of 0, sgn x=-1 $\lim _{x\to 0^+}\left(sgn\:x\right)=-1$ 3. As we know from (1) and (2) $\lim _{x\to 0^+}\left(sgn\:x\right)=1 \ne \lim _{x\to 0^+}\left(sgn\:x\right)=-1$ Since the two sides do not equal, limit does not exist. $\lim _{x\to 0}\left(sgn\:x\right)=D.N.E.$ 4. $\lim _{x\to 0^+}\left(\left|sgnx\right|\right)=1$ $\lim _{x\to 0^-}\left(\left|sgnx\right|\right)=1$ Since two sides are equal then $\lim _{x\to 0}\left(\left|sgnx\right|\right)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.