Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 13

Answer

$6$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 4} \frac{{{t^2} - 2t - 8}}{{t - 4}} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{t \to a} f\left( t \right) = f\left( a \right) \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{t \to 4} \frac{{{t^2} - 2t - 8}}{{t - 4}} = \frac{{{{\left( 4 \right)}^2} - 2\left( 4 \right) - 8}}{{\left( 4 \right) - 4}} \cr & \cr & {\text{Simplifying}} \cr & \mathop {\lim }\limits_{t \to 4} \frac{{{t^2} - 2t - 8}}{{t - 4}} = \frac{0}{0}{\text{ Indeterminate}} \cr & \cr & {\text{Factoring the numerator}} \cr & \mathop {\lim }\limits_{t \to 4} \frac{{{t^2} - 2t - 8}}{{t - 4}} = \mathop {\lim }\limits_{t \to 4} \frac{{\left( {t - 4} \right)\left( {t + 2} \right)}}{{t - 4}} \cr & {\text{Cancel the common factor }}t - 4 \cr & = \mathop {\lim }\limits_{t \to 4} \left( {t + 2} \right) \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{t \to 4} \left( {t + 2} \right) = 4 + 2 = 6 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{t \to 4} \frac{{{t^2} - 2t - 8}}{{t - 4}} = 6 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.