Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 29

Answer

$\lim\limits_{x\to16}\frac{4-\sqrt x}{16x-x^2}=\frac{1}{128}$

Work Step by Step

$A=\lim\limits_{x\to16}\frac{4-\sqrt x}{16x-x^2}$ $A=\lim\limits_{x\to16}\frac{4-\sqrt x}{x(16-x)}$ Multiply both numerator and denominator by $4+\sqrt x$ We see that $(4-\sqrt x)(4+\sqrt x)=16-x$ since $(a-b)(a+b)=a^2-b^2$ Therefore, $A=\lim\limits_{x\to16}\frac{(4-\sqrt x)(4+\sqrt x)}{x(16-x)(4+\sqrt x)}$ $A=\lim\limits_{x\to16}\frac{16-x}{x(16-x)(4+\sqrt x)}$ $A=\lim\limits_{x\to16}\frac{1}{x(4+\sqrt x)}$ $A=\frac{1}{16\times(4+\sqrt16)}$ $A=\frac{1}{128}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.