Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 19

Answer

$\frac{9}{2}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{{t^2} - 9}} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{t \to a} f\left( t \right) = f\left( a \right) \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{{t^2} - 9}} = \frac{{{{\left( 3 \right)}^3} - 27}}{{{{\left( 3 \right)}^2} - 9}} \cr & \cr & {\text{Simplifying}} \cr & \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{{t^2} - 9}} = \frac{{{{\left( 3 \right)}^3} - 27}}{{{{\left( 3 \right)}^2} - 9}} = \frac{0}{0}{\text{ Indeterminate}} \cr & \cr & {\text{Factoring the numerator and denominator}} \cr & \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{{t^2} - 9}} = \mathop {\lim }\limits_{t \to 3} \frac{{\left( {t - 3} \right)\left( {{t^2} + 3t + 9} \right)}}{{\left( {t + 3} \right)\left( {t - 3} \right)}} \cr & {\text{Cancel the common factor }}t - 3 \cr & = \mathop {\lim }\limits_{t \to 3} \frac{{{t^2} + 3t + 9}}{{t + 3}} \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{t \to 3} \frac{{{t^2} + 3t + 9}}{{t + 3}} = \frac{{{{\left( 3 \right)}^2} + 3\left( 3 \right) + 9}}{{\left( 3 \right) + 3}} = \frac{{27}}{6} = \frac{9}{2} \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{t \to 3} \frac{{{t^2} + 3t + 9}}{{t + 3}} = \frac{9}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.