Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 20

Answer

$\frac{1}{3}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{u \to - 1} \frac{{u + 1}}{{{u^3} + 1}} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{u \to a} f\left( u \right) = f\left( a \right) \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{u \to - 1} \frac{{u + 1}}{{{u^3} + 1}} = \frac{{\left( { - 1} \right) + 1}}{{{{\left( { - 1} \right)}^3} + 1}} \cr & \cr & {\text{Simplifying}} \cr & \mathop {\lim }\limits_{u \to - 1} \frac{{u + 1}}{{{u^3} + 1}} = \frac{{\left( { - 1} \right) + 1}}{{{{\left( { - 1} \right)}^3} + 1}} = \frac{0}{0}{\text{ Indeterminate}} \cr & \cr & {\text{Factoring the denominator}} \cr & \mathop {\lim }\limits_{u \to - 1} \frac{{u + 1}}{{{u^3} + 1}} = \mathop {\lim }\limits_{u \to - 1} \frac{{u + 1}}{{\left( {u + 1} \right)\left( {{u^2} - u + 1} \right)}} \cr & {\text{Cancel the common factor }}u + 1 \cr & = \mathop {\lim }\limits_{u \to - 1} \frac{1}{{{u^2} - u + 1}} \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{u \to - 1} \frac{1}{{{u^2} - u + 1}} = \frac{1}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}} = \frac{1}{3} \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{u \to - 1} \frac{1}{{{u^2} - u + 1}} = \frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.