Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 28

Answer

$\lim\limits_{t\to0}(\frac{1}{t}-\frac{1}{t^2+t})=1$

Work Step by Step

$\lim\limits_{t\to0}(\frac{1}{t}-\frac{1}{t^2+t})$ $=\lim\limits_{t\to0}(\frac{1}{t}-\frac{1}{t(t+1)})$ $=\lim\limits_{t\to0}\frac{(t+1)-1}{t(t+1)}$ $=\lim\limits_{t\to0}\frac{t}{t(t+1)}$ $=\lim\limits_{t\to0}\frac{1}{t+1}$ (divide both numerator and denominator by $t$) $=\frac{1}{0+1}$ $=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.