Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 21

Answer

$ - 6$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {h - 3} \right)}^2} - 9}}{h} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{u \to a} f\left( u \right) = f\left( a \right) \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {h - 3} \right)}^2} - 9}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {0 - 3} \right)}^2} - 9}}{0} = \frac{0}{0}{\text{ Indeterminate}} \cr & \cr & {\text{Expanding the binomial }} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2} - 6h + 9 - 9}}{h} \cr & {\text{Simplifying}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2} - 6h}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{h\left( {h - 6} \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \left( {h - 6} \right) \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{h \to 0} \left( {h - 6} \right) = 0 - 6 = - 6 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {h - 3} \right)}^2} - 9}}{h} = - 6 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.