Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 22

Answer

$6$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) \cr & \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} = \frac{{9 - 9}}{{3 - \sqrt 9 }} = \frac{0}{0}{\text{Indeterminate}} \cr & \cr & {\text{Rationalizing }} \cr & \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} \times \frac{{3 + \sqrt x }}{{3 + \sqrt x }} \cr & = \mathop {\lim }\limits_{x \to 9} \frac{{\left( {9 - x} \right)\left( {3 + \sqrt x } \right)}}{{\left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right)}} \cr & {\text{Recall that }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} \cr & = \mathop {\lim }\limits_{x \to 9} \frac{{\left( {9 - x} \right)\left( {3 + \sqrt x } \right)}}{{{{\left( 3 \right)}^2} - {{\left( {\sqrt x } \right)}^2}}} \cr & {\text{Simplifying}} \cr & = \mathop {\lim }\limits_{x \to 9} \frac{{\left( {9 - x} \right)\left( {3 + \sqrt x } \right)}}{{9 - x}} \cr & = \mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right) \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{x \to 9} \left( {3 + \sqrt x } \right) = 3 + \sqrt 9 = 6 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 9} \frac{{9 - x}}{{3 - \sqrt x }} = 6 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.