Answer
$ - 13$
Work Step by Step
$$\eqalign{
& \mathop {\lim }\limits_{x \to - 2} \left( {3x - 7} \right) \cr
& {\text{Evaluate the limit by using the Direct Substitution Property}} \cr
& \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) \cr
& \cr
& {\text{Therefore}}{\text{,}} \cr
& \mathop {\lim }\limits_{x \to - 2} \left( {3x - 7} \right) = 3\left( { - 2} \right) - 7 \cr
& \cr
& {\text{Simplifying}} \cr
& \mathop {\lim }\limits_{x \to - 2} \left( {3x - 7} \right) = - 6 - 7 \cr
& \mathop {\lim }\limits_{x \to - 2} \left( {3x - 7} \right) = - 13 \cr} $$