Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 17

Answer

$\frac{5}{7}$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{3{x^2} + 5x - 2}} \cr & {\text{Evaluate the limit by using the Direct Substitution Property}} \cr & \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) \cr & \cr & {\text{Therefore}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{3{x^2} + 5x - 2}} = \frac{{{{\left( { - 2} \right)}^2} - \left( { - 2} \right) - 6}}{{3{{\left( { - 2} \right)}^2} + 5\left( { - 2} \right) - 2}} \cr & \cr & {\text{Simplifying}} \cr & \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{3{x^2} + 5x - 2}} = \frac{0}{0}{\text{ Indeterminate}} \cr & \cr & {\text{Factoring the numerator and denominator}} \cr & \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{3{x^2} + 5x - 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 3} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {3x - 1} \right)}} \cr & {\text{Cancel the common factor }}x + 2 \cr & = \mathop {\lim }\limits_{x \to - 2} \frac{{x - 3}}{{3x - 1}} \cr & \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{x \to - 2} \frac{{x - 3}}{{3x - 1}} = \frac{{ - 2 - 3}}{{3\left( { - 2} \right) - 1}} = \frac{5}{7} \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{3{x^2} + 5x - 2}} = \frac{5}{7} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.