Answer
$5$
Work Step by Step
$$\eqalign{
& \mathop {\lim }\limits_{x \to 6} \left( {8 - \frac{1}{2}x} \right) \cr
& {\text{Evaluate the limit by using the Direct Substitution Property}} \cr
& \mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right) \cr
& \cr
& {\text{Therefore}}{\text{,}} \cr
& \mathop {\lim }\limits_{x \to 6} \left( {8 - \frac{1}{2}x} \right) = 8 - \frac{1}{2}\left( 6 \right) \cr
& \cr
& {\text{Simplifying}} \cr
& \mathop {\lim }\limits_{x \to 6} \left( {8 - \frac{1}{2}x} \right) = 8 - 3 \cr
& \mathop {\lim }\limits_{x \to 6} \left( {8 - \frac{1}{2}x} \right) = 5 \cr} $$