Answer
$\sqrt[15]x$
Work Step by Step
Simplify. $\sqrt[5]{\sqrt[3]x}$
As per definition of square root property,we have $(p)^{\frac{m}{n}}=(\sqrt[n] {p})^m$
Thus, the given radical term can be written as:
$\sqrt[5]{\sqrt[3]x}=\sqrt[5]{x^\frac{1}{3}}$
or,$=(x^\frac{1}{3})^\frac{1}{5}$
or, $=x^\frac{1}{15}$
Formula to convert the expression to radical form as: $a^\frac{x}{n}=\sqrt[n]{a^x}$
Hence, the above exponent in radical form can be written as: $\sqrt[15]x$