Answer
$\sqrt[6]{x^5}$
Work Step by Step
Simplify. $\sqrt x \sqrt[3]{x}$
As per definition of square root property,we have $(p)^{\frac{m}{n}}=(\sqrt[n] {p})^m$
Thus, the given radical term can be written as:
$\sqrt x \sqrt[3]{x}={x^\frac{1}{2}}(x)^\frac{2}{3}$
Since, the power raised to a same exponent gets add.
or,$=x^{\frac{1}{2}+\frac{2}{3}}$
or, $=x^\frac{3+2}{6}$
or, $=x^\frac{5}{6}$
Hence, the above exponent in radical notation can be written as: $\sqrt[6]{x^5}$