Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 8

Answer

$(2\sqrt 2,1),(-2\sqrt 2,1),(2\sqrt 2,-1),(-2\sqrt 2,-1)$

Work Step by Step

$4x^{2}+3y^{2} = 35$ Equation $(1)$ $5x^{2}+2y^{2} = 42$ Equation $(2)$ Multiply Equation $(1)$ by $2$ and Equation $(2)$ by $-3$ $8x^{2}+6y^{2} = 70$ Equation $(3)$ $-15x^{2}-6y^{2} = -126$ Equation $(4)$ Add Equation $(3)$ and Equation $(4)$ $8x^{2}+6y^{2} -15x^{2}-6y^{2} = 70-126$ $-7x^{2} = -56$ $x^{2} = \frac{-56}{-7}$ $x^{2} = 8$ $x = \sqrt 8$ $x = \sqrt (4 \times 2)$ $x = ±2\sqrt 2$ $x = 2\sqrt 2$ or $x = -2\sqrt 2$ Substitute $ x$ values in Equation $(1)$ Let $x = 2\sqrt 2$ $4x^{2}+3y^{2} = 35$ $4(2\sqrt 2)^{2}+3y^{2} = 35$ $4(8)+3y^{2} = 35$ $32+3y^{2} = 35$ $3y^{2} = 3$ $y^{2} = 1$ $y = ±\sqrt 1$ $y = ±1$ Let $x = -2\sqrt 2$ $4x^{2}+3y^{2} = 35$ $4(-2\sqrt 2)^{2}+3y^{2} = 35$ $4(8)+3y^{2} = 35$ $32+3y^{2} = 35$ $3y^{2} = 3$ $y^{2} = 1$ $y = ±1$ $(2\sqrt 2,1),(-2\sqrt 2,1),(2\sqrt 2,-1),(-2\sqrt 2,-1)$ satisfy the given equations. So, the solutions set is $\{(2\sqrt 2,1),(-2\sqrt 2,1),(2\sqrt 2,-1),(-2\sqrt 2,-1)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.