Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 10 - Section 10.3 - Solving Nonlinear Systems of Equations - Exercise Set - Page 624: 6

Answer

$(0,-2),(-2,0)$

Work Step by Step

$x^{2}+y^{2}=4$ Equation $(1)$ $x+y = -2$ Equation $(2)$ From Equation $(2)$ $y = -2-x$ Equation $(3)$ Substitute $y = -2-x$ in Equation $(1)$ $x^{2}+y^{2}=4$ $x^{2}+(-2-x)^{2}=4$ [Using $(a+b)^{2}=a^{2}+2ab+b^{2}$ $(-2)^{2}+2(-2)(-x)+(-x)^{2} = 4+4x+x^{2}$] $x^{2}+x^{2}+4x+4=4$ $2x^{2}+4x+4-4=0$ $2x^{2}+4x=0$ $2x(x+2)=0$ $x=0$ or $x=-2$ Substitute $x$ values in Equation $(3)$ Let $x=0$ $y = -2-x$ $y = -2-0$ $y = -2$ Let $x=-2$ $y = -2-(-2)$ $y = -2+2$ $y = 0$ $(0,-2),(-2,0)$ both satisfies the equations $(1)$ and $(2)$ So, solutions are $(0,-2),(-2,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.